

Study of the transfer of a biosourced resin by thermal nanoimprint

Paule Durin^{1,2}, Céline Chevalier¹, Aziz Benamrouchel¹, Radoslaw Mazurczyk¹, Yann Chevolot¹, Didier Léonard², <u>Jean-Louis Leclercq¹</u>

¹Univ. Lyon, CNRS, INSA Lyon, Ecole Centrale de Lyon, Univ. Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, F-69134 Ecully, France

²Univ. Lyon, CNRS, Univ. Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, F-69100 Villeurbanne, France

Context

- Lithogreen ANR project (ANR-19-CE43-0009) aims at the replacement of current (Deep) UV photolithography synthetic resists for micro/nanofabrication
- **Polysaccharides** from biomass as water developable eco-friendly (Deep) UV photolithography resist

Towards to eco-friendly resists

From biomass source water soluble resist

CHITOSAN PRODUCTION

Nanoimprinting of Chitosan films ?

<u>Objective</u> : single-step nanoimprinting lithography of chitosan at nanoscale without the introduction of additional chemistry

 \rightarrow Substrate : 2,5x2,5 cm², 300 nm de SiO_2/Si <100>

 \rightarrow 250 nm thick films : C (chitosane) =1% (m/v), DA 35%, Mw=613 kDa, Mn=351 kDa, H_2O=13,5%

 \rightarrow Silanized nanopatterned Si molds : microlines and nanodots features

Setting parameters Thermal Nanoimprinting :

- Chuck/Stamp temp : up to 450°C
- Pressure (force) : up to 4000 N
- Step & repeat mode :
 - Stamp from : 2 to 40 mm²
 - Substrate : from 1 cm² up to 200 mm
 - Alignment < 300 mm
- UV NIL@365 nm

Y.G. Bi et al, Nanophotonics, 7 (2017)

SET NPS300 – Nano-Patterning Stepper

Thermodegradation of chitosane*

- Powder and film analysis: from room temperature to a "plateau" from 140°C to 200°C, the polymer only loses water. Then two phases of degradation
 - a first phase from 250°C to 350°C generates the formation of water, carbon monoxide, carbon dioxide and, depending on the AD, ammonia and acetic acid from the acetyl group
 - between 450°C and 750°C, this is the second degradation phase characterized by the formation of methane and a graphite-like carbon compound
- No Tg observed !

➔ Softness vs. hardness of film during nanoimprint ?

*Results from PhD thesis of M. Caillau "Green nanotechnology: polymers of biomass as eco-efficient resins for lithography" 05/10/2017 @INL

First test

- Mold pattern : lines l= $3-4\mu m$ h=400nm, period $5\mu m$
- T=150°C, during 1200s, F=4000N, during 1800s

Second test

- Mold pattern : Holes Ø500nm h=200nm, period 1µm
- T=180°C during 1200s, F=2600N during 2100s

Observations:

- Imprinted depth of 180 nm at best
- Less than 20 nm remaining resin at the bottom of the holes
- 'rabbit-ear' effect still present even by decreasing the dimensions
- → Thermal/pressure to be adapted ?

last test

- Mold pattern : Holes Ø500nm h=200nm, period 500 nm
- Imprinting parameters :
 - ✓ Chuck and mold both heated @ 180°C (20 minutes)
 - ✓ F=2600 N during 2100 sec
 - ✓ Slow cooling and removal:
 - Pressure maintained when T ≥ (15min)
 - Pressure drop by 2min steps

Last test nanoimprinted chitosan : AFM observations

At border of sample

- Very nice and uniform imprinted surface
- Small 'rabbit-ear' at border → thicker part ?
- Not perflecty flat surface in centre → filling not achieved ?
- Still remaining resin at the bottom of the holes J-NIL 2023, Lyon

In the centre of sample

cooling conditions well change the release

Chitosan-SiO2 hardmask transfer : descum step

RIE parameters : O_2 =40sccm; P_T =50mT; RF=40W

Before descum

After 3 seconds

After 3s +3s

Only 6 sec are needed for a perfect descum !

anr®

Chitosan-SiO2 hardmask transfer after descum

RIE parameters : CHF₃=100sccm; P_T=50mT; RF=140W; t=8min

Stripping O₂=100sccm; P_T=100mT; RF=100W; t=2min

SiO2 hardmask transfer in bulk Si

ICP-RIE parameters : O_2 =4,5sccm; Cl_2 =22sccm; P_T=0,3mT; P_{ICP}=100W; P_{RF}=143W; t=9min45s (RF bias = -340V)

AFM : Very nice and uniform surface

• Trenches : depth of 600 minimum due to AFM tip limitations

SEM : Good vertical > $1,6\mu m$ deep holes

→ Respect of nanoimprinted features !

Concluding remarks

- Ability to use **biosourced resin** films without chemical additives in thermal nanoreplication techniques under relatively mild conditions.
- Chitosan excellent properties under engraving plasmas (Descum + SiO2 transfer + Stripping) allow their exploitation in micro-nanofabrication
- Better imprinted chitosan when lowering cooling conditions and removal of mold
- To be tested ?
 - Lower Temperature
 - Pressure application at room temperature before heating
 - ...

Acknowledgements

LITHOGREEN project () partners Paule Durin, Yann Chevolot from INL Olha Sysova, Olivier Soppera from IS2M Alexandre Teolis, Stephane Trombotto,Thierry Delair from IMP Corinne Gablin , Didier Leonard from ISA Isabelle Servin, Arnaud Bazin, Aurélien Sarrazin, Benoît Saudet, Raluca Tiron from CEA-Leti

LITHOGREEN

Chitosan as a green resist for photolithography.

Grant ANR-19-CE43-0009

C

